1. Human Identification at a Distance. The IT Law Wiki. Available at: https://itlaw.fandom.com/wiki/Human_Identification_at_a_Distance (accessed 24 February 2023).
2. ImageNet: A Pioneering Vision for Computers. History of Data Science. Available at: https://www.historyofdatascience.com/imagenet-a-pioneering-vision-for-computers/ (accessed 24 February 2023).
3. Krizhevsky A., Sutskever I. and Hinton G. E. Imagenet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems, 2012, vol. 25, pp. 1097-1105.
4. Zeiler M. D., Fergus R. Visualizing and understanding convolutional networks. European Conference on Computer Vision (ECCV), Zurich, Switzerland, 2014, vol. 8689, pp. 818-833. doi: 10.1007/978-3-319-10590-1_53.
5. He K., Zhang X., Ren S., Sun J. Deep residual learning for image recognition. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 770–778. doi: 10.1109/CVPR.2016.90.
6. Alsaggaf W. A., Mehmood I., Khairullah E. F., Alhuraiji S., Sabir M. F. S., Alghamdi A. S., Abd El-Latif A. A. A Smart Surveillance System for Uncooperative Gait Recognition Using Cycle Consistent Generative Adversarial Networks(CCGANs). Hindawi. Computational Intelligence and Neuroscience, 2021, vol. 2021, article ID 3110416. doi: 10.1155/2021/3110416.
7. CASIA-B. GitHub. Available at: https://github.com/ShiqiYu/OpenGait/blob/master/datasets/CASIA-B/README.md
(accessed 24 February 2023).
8. Sarkar S., Phillips P. J., Liu Z., Vega I. R., Grother P., Bowyer K. W. The HumanID Gait Challenge Problem: Data Sets, Performance, and Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, vol. 27, No. 2, pp. 162-177. doi: 10.1109/tpami.2005.39.
9. Toshev A., Szegedy C. DeepPose: Human Pose Estimation via Deep Neural Networks. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 2014, pp. 1653-1660. doi: 10.1109/CVPR.2014.214.
10. OpenPose. GitHub. Available at: https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/README.md (accessed 24 February 2023).
11. Pishchulin L., Insafutdinov E., Tang S., Andres B., Andriluka M., Gehler P. V., Schiele B. DeepCut: Joint Subset Partition and Labeling for Multi Person Pose Estimation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 4929-4937. doi: 10.1109/CVPR.2016.533.
12. Inside MoveNet, Google’s Latest Pose Detection Model. Analytics India Magazine. Available at: https://analyticsindiamag.com/inside-movenet-googles-latest-pose-detection-model/ (accessed 24 February 2023).
13. Chai T., Li A., Zhang S., Li Z., Wang Y. Lagrange Motion Analysis and View Embeddings for Improved Gait Recognition. IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 2022, pp. 20249–20258. doi: 10.1109/CVPR52688.2022.01961.
14. Lin B., Zhang S., Yu X. Gait recognition via effective global-local feature representation and local temporal aggregation. IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 2021, pp. 14648–14656. doi: 10.1109/ICCV48922.2021.01438.
15. Teepe T., Gilg J., Herzog F., Hörmann S., Rigoll G. Towards a Deeper Understanding of Skeleton-based Gait Recognition. IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, pp. 1569-1577.
16. Wang L., Han R., Feng W. Combining the Silhouette and Skeleton data for Gait Recognition. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 2022, pp. 1-5. doi: 10.1109/ICASSP49357.2023.10096986.
17. Cui Y, Kang Y. Multi-modal Gait Recognition via Effective Spatial-Temporal Feature Fusion. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, Canada, pp. 17949-17957, doi: 10.1109/CVPR52729.2023.01721.
18. Wang L., Chen J., Liu Y. Frame-level refinement networks for skeleton-based gait recognition. Computer Vision and Image Understanding, 2022, vol. 222, pp. 103500. doi: 10.1016/j.cviu.2022.103500.
19. Hsu H.-M., Wang Y., Yang C.-Y, Hwang J.-N., Thuc H. L. U., Kim K.-J. GaitTAKE: Gait recognition by temporal attention and keypoint-guided embedding. IEEE International Conference on Image Processing (ICIP), Bordeaux, France, 2022, pp. 2546–2550. doi: 10.1109/ICIP46576.2022.9897409.
20. Pinyoanuntapong E., Ali A., Wang P., Lee M., Chen C. GaitMixer: Skeleton-Based Gait Representation Learning Via Wide-Spectrum Multi-Axial Mixer. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 2023, pp. 1–5. doi: 10.1109/ICASSP49357.2023.10096917.
21. Shen C., Yu S., Wang J., Huang G. Q., Wang L. A Comprehensive Survey on Deep Gait Recognition: Algorithms, Datasets and Challenges, arXiv, 2023. doi: 10.48550/arXiv.2206.13732.
22. MPII Human Pose Dataset. Max Planck Institute for Informatics. Available at: http://human-pose.mpi-inf.mpg.de/ (accessed 24 February 2023).
23. 10,000 People - Human Pose Recognition Data. Papers with Code. Available at: https://paperswithcode.com/dataset/10000-people-human-pose-recognition-data (accessed 24 February 2023).
24. COCO 2018 Keypoint Detection Task. COCO – Common Objects in Context. Available at: https://cocodataset.org/#keypoints-2018 (accessed 24 February 2023).
25. Intersection over Union (IoU) for object detection. SuperAnnotate. Available at: https://www.superannotate.com/blog/intersection-over-union-for-object-detection (accessed 24 February 2023).
26. Common Objects in Context. Keypoint Evaluation. COCO – Common Objects in Context. Available at: https://cocodataset.org/#keypoints-eval (accessed 24 February 2023).
27. Newell A., Yang K., Deng J. Stacked Hourglass Networks for Human Pose Estimation. European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 2016, vol. 9912, pp. 483-499. doi: 10.1007/978-3-319-46484-8_29.
28. Sun K., Xiao B., Liu D., Wang J. Deep High-Resolution Representation Learning for Human Pose Estimation. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019, pp. 5686-5696. doi: 10.1109/CVPR.2019.00584.
29. Xu Y., Zhang J., Zhang Q., Tao D. ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation. arXiv. 2022. doi: 10.48550/arXiv.2204.12484.
30. Cao Z., Hidalgo G., Simon T., Wei S.-E., Sheikh Y. OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, vol. 43, pp. 172-186. doi: 10.1109/TPAMI.2019.2929257.
31. Artacho B., Savakis A. OmniPose: A Multi-Scale Framework for Multi-Person Pose Estimation. arXiv. 2021. doi: 10.48550/arXiv.2103.10180.
32. Votel R., Li N. Next-Generation Pose Detection with MoveNet and TensorFlow.js. TensorFlow Blog. Available at: https://blog.tensorflow.org/2021/05/next-generation-pose-detection-with-movenet-and-tensorflowjs.html (accessed 24 February 2023).
33. Pose Detection. GitHub Available at: https://github.com/tensorflow/tfjs-models/blob/master/pose-detection/README.md. (accessed 24 February 2023).